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Bioactive compounds produced by cyanobacteria 
M Namikoshi 1 and KL Rinehart 

Roger Adams Laboratory, University of Illinois, 600 S Matthews Ave, Urbana, IL, USA 

Cyanobacteria produce a large number of compounds with varying bioactivities. Prominent among these are toxins: 
hepatotoxins such as microcystins and nodularins and neurotoxins such as anatoxins and saxitoxins. Cytotoxicity 
to tumor cells has been demonstrated for other cyanobacterial products, including 9-deazaadenosine, dolastatin 13 
and analogs. A number of compounds in cyanobacteria are inhibitors of proteases - -  micropeptins, cyanopeptolins, 
oscillapeptin, microviridin, aeruginosins - -  and other enzymes, while still other compounds have no recognized 
biological activities. In general cyclic peptides and depsipeptides are the most common structural types, but a wide 
variety of other types are also found: linear peptides, guanidines, phosphonates, purines and macrolides. The close 
similarity or identity in structures between cyanobacterial products and compounds isolated from sponges, 
tunicates and other marine invertebrates suggests the latter compounds may be derived from dietary or symbiotic 
blue-green algae. 
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Hepatotoxins from Microcystis, Anabaena, 
Nostoc, Oscillatoria and Nodularia 

Toxic cyanobacterial (blue-green algal) waterhlooms are 
found worldwide in eutrophic lakes, ponds, drinking water 
reservoirs and coastal waters, where they cause animal 
poisonings and pose risks to human health [8,9,11]. Several 
genera of cyanobacteria form these toxic waterblooms, with 
Microcystis being the most common [8,9,80]. Two types of 
toxins, hepatotoxins and neurotoxins, have been charac- 
terized from the toxic cyanobacteria, but hepatotoxicosis 
occurs more often than neurotoxicosis [8,9]; about 50% of 
Microcystis waterblooms show hepatotoxicity to mammals 
and other animals. The toxins responsible for the hepatotox- 
icity are the well known microcystins [10]. Microcystins 
are obtained not only from Microcystis, but also from Ana- 
baena, Nostoc and Oscillatoria [74] which also form water- 
blooms. 

The microcystins are cyclic heptapeptides like the rep- 
resentative microcystin-LR depicted in Figure 1 [72]. The 
unique structural feature in microcystins is the C2o amino 
acid, (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl- l O- 
phenyldeca-4E,6E-dienoic acid (Adda) [72[, which plays an 
important role in their toxicity [21,54,55,59,74,82]. The 
suffix, LR, identifies the two variable L-amino acids at pos- 
itions 2 and 4, ie, Leu and Arg [10]. More than 50 structural 
variations in microcystins have been found from the four 
genera of cyanobacteria [60,74]. The general structure of 
microcystins is cyclo(-D-Ala-X-D-MeAsp-Z-Adda-o-Glu- 
Mdha-), in which MeAsp is erythro-~-methylaspartic acid 
and Mdha indicates N-methyldehydroalanine [10,74]. X 
and Z are the commonly variable L-amino acids (positions 
2 and 4), but structural modifications have been detected 
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Figure 1 Microcystin-LR. 

in all seven amino acid units [60,74]. Some relationships 
between structural modifications and toxicity have been 
found for microcystins [21,54-57,59,60,74,82]. The struc- 
turally related toxins nodularins have been isolated from 
the brackish water-dwelling cyanobacterium Nodularia 
spumigena [59,72]. Nodularins are cyclic pentapeptides and 
have the Adda unit or its derivative (Figure 2). 

Microcystins and nodularins show hepatotoxicity 
through inhibitory activity to protein phosphatases 1 and 
2A [26,41,86] and are potent tumor promoters [15,61,62]. 
The cyclic structure of these toxins is essential for the tox- 
icity, since linear compounds which have the same amino 
acid components as the cyclic peptides did not show appar- 
ent toxicity to mice [13,59,60]. 

Extensive efforts have been devoted to studies on cyano- 
bacterial toxins resulting in understanding of the toxins and 
producing organisms. The results of studies on chemical 
structures, biosynthesis and structure-toxicity relationships 
of microcystins and nodularins have been summarized in 
our earlier review [74]. Microcystins are the most common 
causative agent of cyanobacterial waterbloom toxicosis, 
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Figure 2 Nodularin isolated from the brackish water cyanobacterium 
Nodularia spumigena. 

and show toxicity to mice at concentrations as low as 
50/xg kg -1 (LDs0, intraperitoneal injection). The netpen 
liver disease of salmon observed on the Pacific Canadian 
coast is thought to be caused by microcystins [2]. A com- 
pound structurally related to nodularins, motuporin ([L- 
Val2]nodularin), which has an L-Val unit instead of the L- 
Arg unit in nodularin, has been isolated from a marine 
sponge, Theonella swinhoei [14], but does not show cyto- 
toxicity. 

A structurally unrelated cyanobacterial hepatotoxin, cyl- 
indrospermopsin (Figure3), has been isolated fi'om 
Cylindrospermopsis raciborskii [63] and Umezakia natans 
[24] and has an acute (24 h) LDso of 2.1 mg kg -1 (IP). 

Neurotoxins  from cyanobacter ia  

Neurotoxins (Figure 4) are the other group of cyanobacter- 
ial toxins (anatoxin-a from Anabaena and Oscillatoria, ana- 
toxin-a(s) from Anabaenaflos-aquae, homoanatoxin-a from 
Oscillatoria rubescens, saxitoxin and neosaxitoxin from 
Aphanizomenon and Anabaena) [8]. Microcystis species 
also produce anatoxin-a [67]. Saxitoxins are also produced 
by certain marine dinoflagellates [32,81]. 

During our studies on the metabolites of toxic cyanobac- 
teria we isolated two nucleosides (Figure 5), 9-deazaadeno- 
sine and its 5'-C~-D-glucopyranoside, from the freshwater 
cyanobacterium Anabaena affinis VS-1 [58]. These com- 
pounds showed cidal toxicity to a zooplankton, Cerio- 
daphnia dubia (LCso = 0.1-0.5/xg ml 1), and potent cyto- 
toxicity to murine leukemia cells Ll210 (ICs0 = 0.002 and 

OH 
H H .:: 

E) O 3 S ~  O 

cylindrospermopsin 

Figure 3 The structure of cylindrospermopsin. 
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Figure 4 Anatoxin-a, homoanatoxin-a, anatoxin-a(s), saxitoxin and neo- 
saxitoxin. 
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Figure5  9-Deazaadenosine and its 5'-G-D-glucopyranoside isolated 
from the freshwater cyanobacterium Auabaena afflnis strain VS-1. 

0.02/xg m1-1, respectively) [57,58]. The search for bioac- 
rive natural products, such as cytotoxins to tumor cells and 
antibacterial, antifungal and antiviral agents, from cyano- 
bacteria has recently intensified [17,68]. The main effort 
for this purpose involved isolation of cyanobacteria strains 
from various environments and culturing of each strain to 
test for biological activities. Although toxins were the main 
subject of research on toxic cyanobacterial waterblooms, 
isolation of bioactive compounds other than biotoxins has 
recently been stressed. 

Serine protease inhibitors from cyanobacter ia  

The production of bioactive components from Microcystis 
suggested a screening program for protease-inhibitory 



Bioactive compounds produced by cyanobacteria 
M Namikoshi and KL Rinehart P ~  

Ahp 

OH 
O ~ CH 3 

L-Asp R N 

HOOC 
O ~ H O ' ' ~  NH O H3C-N 

L-Thr H3C CH3 L-MePhe 

k-Val 

NH2 / 
Cyanopeptolin A : R = HN~'~N ~ (L-Arg) 

H 

Cyanopeptolin B : R = H 2 N ~  (L-Lys) 

H 
Cyanopeptolin C : R = H a C , . . . N ~  (L-/V~-methyI-Lys) 

OH 3 
I 

Cyanopeptolin D : R = H s c / N ~  (L-fV~,/k'e-dimethyI-Lys) 
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PCC 7806. 

activity of microalgal secondary metabolites [5]. The pres- 
ence of non-toxic peptides in Microcystis in addition to 
microcystins was reported first by Weckesser and co-work- 
ers [4]. The structures of these peptides, termed cyano- 
peptolins A-D,  isolated from microcystin-producing 
Microcystis aeruginosa PCC 7806, were assigned as shown 
in Figure 6 [42]. These compounds are cyclic depsipeptides 
(cyclic peptidolactones) and contain a unique amino acid 
unit, 3-amino-6-hydroxy-2-piperidone (Ahp). A number of 
closely related depsipeptides bearing the Ahp unit have 
been isolated since then from both toxic and non-toxic 
Microcystis species. The structures are summarized in 

Figure 7. Microcystilide A was isolated from M. aerugi- 
nosa NO-15-1840, which produced microcystins, and pro- 
moted cell differentiation of HL-60 cells at a concentration 
of 0.5 mg ml -~ [84]. Aeruginopeptins 95-A and B, and 228- 
A and B were isolated from M. aeruginosa strains TAC95 
and M228, respectively [23]. Both strains produced 
microcystins, but no biological activity of these depsipep- 
tides was noted. Five compounds belonging to this class 
were obtained as serine protease inhibitors. Micropeptins 
A and B, isolated from non-toxic M. aeruginosa NIES-100, 
showed inhibitory activities to plasmin and trypsin [65] and 
micropeptin 90 from non-toxic M. aeruginosa NIES-90 
also inhibited plasmin and trypsin [28]. Cyanopeptolins S 
and SS were isolated together with microcystins from a 
waterbloom sample dominated by a Microcystis sp col- 
lected from a lake in Germany and showed inhibitory 
activity to trypsin, plasmin and thrombin [30,31]. The 
inhibitory activities to serine proteases by the depsipeptides 
isolated from Microcystis and other genera are summarized 
in Table 1 together with other serine protease inhibitors 
shown in Figures 8-10. 

This class of depsipeptides has also been isolated from 
Oscillatoria spp and Anabaena spp. Oscillapeptin was 
obtained as a serine protease inhibitor from non-toxic 
Oscillatoria agardhii NIES-204 and inhibited e!astase and 
chymotrypsin [78]. Oscillapeptin G was produced by O. 
agardhii NIES-610, together with microcystins, and 
showed inhibitory activity to tyrosinase at 1.0 • 10 -4 M 
[77]. The isolation of anabaenopeptilides 90-A and B, and 
202-A and B from Anabaena circinalis 90 and Anabaena 
lemmermannii 202 A2/41, respectively, was recently 
reported [16]. These two Anabaena spp were hepatotoxic, 
and microcystins have been characterized as the responsible 
toxins [79]. 

A closely related compound was isolated from a cyano- 
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Table 1 The inhibitory activity (ICso) to serine proteases and tyrosinase by peptides isolated from cyanobacteria 

Trypsin Plasmin Thrombin Elastase Chymotrypsin Tyrosinase Ref 

Micropeptin A 0.07P 0.026 n/i b n/i n/i [65] 
Micropeptin B 0.25 0.035 n/i n/i n/i [65] 
Micropeptin 90 2.0 0.1 n/i n/i [28] 
Cyanopeptolin S <0.2 < 1 <5 [30] 
Cyanopeptolin SS <0.2 < 1 <5 [31 ] 
Oscillapeptin n/i n/i n/i 0.3 2.2 [78] 
Oscillapeptin G 1.0 • 10 -4 M [77] 
A90720A 10 nM 30 nM 275 nM [40] 
Nostopeptin A n/i n/i n/i 1.3 1.4 [44] 
Microviridin A n/i n/i n/i n/i n/i 3.3 • 10 -4 M [29] 
Microviridin B 58 n/i n/i 0.044 2.5 [66] 
Microviridin C 32 n/i n/i 0.084 4.9 [66] 
Aeruginosin 298-A 1.0 n/i 0.3 n/i n/i [51] 
Aeruginosin 98-A 0.6 6.0 7.0 n/i rdi [53] 
Aeruginosin 98-B 0.6 7.0 10.0 n/i n/i [53] 
Aeruginosin 98-C 3.9 5.0 3.3 n/i n/i [52] 
Aeruginosin 102-A 0.2 0.3 0.04 n/i n/i [45] 
Aeruginosin 102-B 1.1 0.8 0.1 n/i n/i [45] 
Oscillamide Y 1.0 • 10 5 M [76] 

~The concentration is /xg ml ~, unless otherwise designated. 
bNot inhibited (>10 or 100/Lg ml-~). 
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bacterium other than the above species. Microchaete lok- 
takensis produced A90720A, which showed inhibitory 
activity to trypsin, plasmin and thrombin similar to the 
other compounds. 

A depsipeptide possessing the unique Ahp unit was first 
obtained from the Indian Ocean sea hare Dolabella auricu- 
laria and identified as a cytostatic agent [70]. This com- 
pound, dolastatin 13, has a very similar structure (Figure 7) 
to those of  cyanobacterial metabolites, which would sug- 
gest that the primary producer of  dolastatin 13 or its precur- 
sor may be a cyanobacterium on which the mollusc feeds. 

These depsipeptides, listed in Figure 7, incorporated an 
L-Thr unit in a lactone linkage as another common struc- 
tural feature, in addition to the Ahp unit. All compounds 
have an N-methylated amino acid unit as R 2. The R4 amino 
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acid unit shows wide variety, while R 1 is either Val or Ile. 
The side chains attached to the amino group of L-Thr unit 
can be divided into four types, ie, the N-terminus is acyl- 
ated by four types of carboxylic acids. One type is a hex- 
anoyl or octanoyl acidic amino acid (Asp or Glu) residue. 
A second type has a p-hydroxyphenyllactyl unit attached 
to an amino acid or dipeptide unit. The third type of acid 
is a modified (sulfated, methylated) glyceric acid attached 
to the L-Thr unit directly or through an amino acid residue. 
The stereochemistry of glyceric acid in three compounds 
was determined to be D-. The fourth type is a formyl group 
attached to an amino acid or dipeptide. 

The unusual amino acid (H4)Tyr, l',2",3"4'-tetrahydro- 
tyrosine, was detected in aeruginopeptins 95-B and 228-B 
isolated from Microcystis spp. This amino acid was first 

found in microcystin-(H4)YR obtained from a waterbloom 
of Microcystis spp [55,60]. Homotyrosine (Hty), found in 
the compounds from Anabaena spp and Oscillatoria spp, 
is also an amino acid component in microcystins isolated 
from Anabaena spp [22,56]. Dehydrobutyrine (Dhb), an 
amino acid component of dolastatin 13, is also found in 
nodularins as its N-methyl derivative (Figure 2). 

The partial structures of the compounds in Figure 7 at 
the Thr unit, with a variable side chain attached to its amino 
group and its hydroxyl in a lactone bond in the ring, 
resemble those of didemnins isolated from the colonial 
tunicate Trididemnum solidum [73]. Didemnins are thought 
to be derived at least in part from symbiotic cyanobacter- 
ial metabolite(s). 

A similar depsipeptide has been isolated from Nostoc 
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minutum NIES-26 as a serine protease inhibitor [44]. The 
compound, nostopeptin A, has the Ahp unit and a rare 
amino acid component, 3-hydroxy-4-methylproline (Hmp). 
The Hmp unit forms the lactone bond in the ring system, 
like the Thr unit in the above compounds. The 19-mem- 
bered depsipeptides possessing the Ahp unit appear to be 
common metabolites in the freshwater cyanobacteria. 

The second type of depsipeptides has the unique struc- 
tural feature of a tricyclic ring system (Figure 9). The first 
example was isolated from the toxic Microcystis viridis 
NIES-102, which produced microcystins, and was named 
microviridin after the producing organism [29]. Although 
all amino acid components were L-, the structure assigned 
was quite unusual. Microviridin was reported to inhibit 
tyrosinase activity at a concentration of 3.3 • 10-14M 
(Table 1). Two compounds closely related to microviridin 
have been reported recently from toxic M. aeruginosa 
NIES-298 [66] and named microviridins B and C. Another 
compound isolated from the same organism together with 
microviridins B and C was identified as microviridin and 
it has been suggested to rename microviridin as microviri- 
din A. The structural differences between microviridins A 
and B are rather small: three amino acid components of 
Tyr, Gly and Phe in microviridin A are replaced by Phe, 
Thr and Leu, respectively, in microviridin B as indicated 
by underlining in Figure 9. The ester bond between the Ser 
hydroxyl group and the y-carboxyl of the Glu unit found 
in microviridins A and B is missing in microviridin C, and 
the Glu y-carboxyl is present as its methyl ester. 

Microviridins B and C inhibited the activities of elastase, 
chymotrypsin and tyrosinase (Table 1), while microviridin 
A did not inhibit these serine proteases at 100/,g m1-1 [66]. 
The mechanism of action and structure-activity relationship 
of these compounds to serine proteases are interesting 
research targets. 

The other structural type of serine protease inhibitors, 
aeruginosins, have been isolated from toxic and non-toxic 
Microcystis spp (Figure 10). They are linear peptides and 
have the unusal amino acid unit, 2-carboxy-6-hydroxy- 
octahydroindole (Choi), as the common amino acid compo- 
nent. Aeruginosin 298-A was isolated from the toxic strain 
of M. aeruginosa NIES-298 and inhibited thrombin and 
trypsin (Table 1) [51]. Microviridins A, B and C were also 
obtained from this strain (NIES-298), as noted above, 
together with microcystins. The non-toxic strain of M. 
aeruginosa NIES-98 produced aeruginosins 98-A, B and 
C as inhibitors of trypsin, thrombin and plasmin (Table 1) 
[52,53]. Aeruginosins 102-A and B were found in toxic 
M. viridis NIES-102 and inhibited thrombin, trypsin and 
plasmin (Table 1) [45]. This strain produced microcystins 
and microviridin A [29]. 

These compounds have p-hydroxyphenyllactic acid or its 
derivative at the N-terminus as the common structural unit. 
This acid unit is also found in five depsipeptides listed in 
Figure 7 as the masking group at the N-terminus. Aerugino- 
sin 298-A has an L-Leu unit, while the other compounds 
have a D-amino acid unit at the same position. 

The guanidine-containing units at the C-terminus are div- 
ided into three types, all derived from arginine. The argini- 
nal unit in aeruginosins 102-A and B is the aldehyde variant 
of Arg. These two compounds each showed three insepar- 

able peaks on reversed-phase HPLC, which might be 
explained by the equilibria shown in Figure 10 [45]. The 
argininol unit in aeruginosin 298-A is a further reduced 
form of Arg containing a hydroxymethyl group. The third 
unit type, found in aeruginosins 98-A, B and C, is the 
decarboxyl variant of Arg, agmatin. 

Cyanobacterial peptides with other bioactivities 

Figure 11 shows another linear peptide isolated from the 
non-toxic strain of M. aeruginosa NIES-100. This strain 
also produced micropeptins A and B (see above). The linear 
peptide named microginin consisted of three usual and one 
N-methylated L-amino acids and a new/3-amino acid at the 
N-terminus [64]. Microginin inhibited angiotensin-con- 
verting enzyme (LCso = 7.0/xg ml 1) but did not inbibit ser- 
ine proteases. 

Aeruginoguanidines 98-A, B and C (Figure 12) were 
obtained from M. aeruginosa NIES-98 during the isolation 
of serine protease inhibitors aeruginosins 98-A, B and C 
[52]. Aeruginoguanidines have unusual structures contain- 
ing two N-methylated arginines with the C-terminus 
marked by an unusual highly sulfated aromatic amine for 
all three compounds, and two guanidine groups derivatized 
with prenyl and geranyl groups in aeruginoguanidine 98- 
A. The structures of aeruginoguanidines 98-B and C differ 
from that of 98-A in the isoprenoid units attached to the 
guanidino groups. These compounds were reported to show 
weak cytotoxicity to P388. 

The 19-membered cyclic peptides shown in Figure 13 are 
not metabolites of Microcystis spp but were produced by 
toxic strains of Anabaena spp and an Oscillatoria sp. Ana- 
baenaflos-aquae NRC 525-17 gave anabaenopeptins A and 
B together with microcystins and anatoxin-a(s) [25]. These 
peptides showed weak relaxation activity to norepi- 
nephrine-induced constriction of rat aortic preparations. A. 
circinalis 90 produced anabaenopeptins A, B and C, and 
anabaenopeptins B and D were isolated from A. lemmer- 
mannii 202 A2/41 [16]. Both strains contained microcys- 
tins. Oscillamide Y was obtained as a serine protease 
inhibitor from the microcystin-producing strain of O. 
agardhii NIES-601 [76], which also produced oscillapeptin 
G. Oscillamide Y inhibited the activity of chymotrypsin 
(Table 1), which suggests that the other members of the 
class might also have this activity. 

Anabaenopeptins have been detected from six Anabaena 
and two Oscillatoria strains of fresh-water cyanobacteria 
and a brackish-water cyanobacterium Nodularia spumi- 

L-A la  L ' M ~  OH 

NH2 O | O 

~ v " ' ~ ~  N N H,v,,."~ N ~ " COOH 

L-Val ~ O H  
L-Tyr 

Microgmin 

Figure 11 Microginin isolated from Microcystis aeruginosa. 
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Anabaenopeptin D L-Val L-Hty L-MeAla L-Phe (L-Phe) 
OscillamideY L-lie Hty MeAla L-Phe (L-Tyr) 

X \  O- ~RI~ / R3~R41 
.= O T R2 I 

HOOC,~N ~ N  ~ .  , , , ~ N  ' 
H H L-Lys 

R1 R 2 R 3 R 4 X 
Konbamide L-Ala L-Leu L-MeLeu BhTrp (L-Leu) 
KeramamideA L-Leu L-Leu MeCht L-Phe (L-Phe) 

BhTrp = 2-bromo-5-hydroxytryptophan 
MeCht = 6-chloro-5-hydroxy-N-methyltryptophan 

Figure 13 19-Membered cyclic peptides isolated from Anabaena spp, 
Oscillatoria sp and marine sponges. 

gena, together with hepatotoxins microcystins or nodularins 
(Table 2) [16]. 

The unique structural features of these compounds are 
the ureido group and the ~o-amido linkage of the D-Lys unit 
with the C-terminal amino acid unit (L-Phe). Interestingly, 
the stereochemistry of this Lys unit (D-) is different from 
the other amino acid units. The amino acid units R2, R3 
and R4 are the same in the five peptides and R3 is N-methyl- 
ated. The terminal amino acid (X) forming the ureido unit 
shows wide variety among these peptides, however. 

Peptides structurally related to these compounds have 
been isolated from two species of marine sponges belong- 
ing to the TheonelIa genus. Konbamide [36] and keramam- 
ide A [37] have cyclic structures possessing the ureido unit 
and the o)-amide linkage similar to the above compounds 
(Figure 13). The position of the N-methylated amino acid 
unit is also the same as in the cyanobacterial metabolites. 
The difference is observed in the Lys unit: the compounds 
from marine sponges have an L-Lys unit instead of the D- 
form of the cyanobacterial metabolites. Konhamide and 
keramamide A each have one unique tryptophan derivative 
(BhTrp and MeCht) as shown in Figure 13. 

The cyanobacterial genus Microcystis is a rich source of 
cyclic and linear peptides possessing a variety of biological 
activities, including the inhibition of certain enzyme activi- 
ties. Structurally related peptides are also obtained from 
Anabaena, Nostoc and Oscillatoria spp. These peptides 
could be common secondary metabolites of the cyanobac- 
teria which form toxic waterblooms, but since both toxic 
and non-toxic strains produce similar peptides, a relation- 
ship between these peptides and biotoxin production is 
still unclear. 

Relationship between cyanobacterial and 
invertebrate products 

During studies on cyanobacterial secondary metabolites, 
structural relationships between the cyanobacterial second- 
ary metabolites and compounds isolated from marine 
invertebrates have been observed. The structure of dolasta- 
tin 13, from the sea hare, resembles the structures of the 
cyanobacterial 19-membered depsipeptides in Figure7, 
which are also similar to structures of didemnins from a 
colonial tunicate, as noted above. The 19-membered cyclic 
peptides shown in Figure 13 have structures related to those 
of compounds from marine sponges. The structural near- 
identity between nodularins from the cyanobacterium and 

~ 1 5  13 
o 

~ O.,,,~/,.O' O ~ H N I ! , , , , , , , ~ R  2 

1 ~ 2 0 ~ ' ~  8 ~ O  U L ~ O M  e 

cryptophycin-l" R 1 = CH3, R 2 = CI 
arenastatin A (cryptophycin-24): R1 = H, R 2 = H 

Figure 14 Cryptophycin A from a cyanobacterium and arenastatin from 
a sponge. 
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y.  .% 

cycloxazol ine (west ie l lamide)  

Figure 15 Cycloxazoline, from a tunicate, the same as westiellamide, 
from a cyanobacterium. 

motuporin from a sponge was also noted above. Examples 
of these relationships are increasing as more structures of  
cyanobacterial secondary metabolites are assigned. 

Several additional examples follow. Cryptophycins 
[18,83], isolated from terrestrial cyanobacteria (Nostoc spp) 
as antitumor agents, have structures very similar to that of 
arenastatin A [39], from the marine sponge Dysidea arena- 

OH OH 

aplysiatoxin: R 1 = OH 3, R 2 = Br 
oscillatoxin A: R 1 = R 2 = H 

Figure 17 Aplysiatoxin, from a sea hare, and oscillatoxin A, from a 
cyanobacterium. 

ria (Figure 14). A cytotoxic cyclic peptide cycloxazoline 
[20] from the colonial tunicate Lissoclinum bistraturn is the 
same compound as westiellamide [71] obtained from the 
terrestrial cyanobacterium Westiellopsis prolifica (Figure 
15). The terrestrial cyanobacteria Scytonema spp and Toly- 
pothrix spp produce cytotoxic scytophycins and tolytoxins 
[6,27] whose structures are related to those of marine 
sponge metabolites swinholide A [7,35,38] from Theonella 
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Figure 16 Tolytoxin and scytophycin B, from cyanobacteria, swinholide A and halichondramide, from sponges, and kabiramide from nudibranch 
egg masses. 
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majusculamide C: R1 =--CH(CH3)CH2CH3 
dolastatin 11:R1 = -CH2CH(CH3)2 

Figure 18 Majusculamide C, from a cyanobacterium, and dolastatin 11, 
from a sea hare. 

R. N 7,,. , .K~Cl R. N / 
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malyngamide C 

O "CH3 OAc 

R = ; ~ C O -  stylocheilamide 

Figure 19 Malyngamide C, from a cyanobacterium, and stylocheilam- 
ide, from a sea hare. 

Table 2 Detection of anabaenopeptins in bepatotoxic cyanobacteria II 6] 

Cyanobacteria Hepatotoxins Anabaenopeptins 

Anabaena flos-aquae NRC 525-17 
Anabaena flos-aquae CYA 83/1 
Anabaena flos-aquae 202 A1 
Anabaena lemmermannii 66 
Anabaena lemmermannii 202 A2/41 
Anabaena circinalis 90 
Oscillatoria agardhii 97 
Oscillatoria agardhii CYA 128 
Nodularia ~pumigena BY1 

microcystins A, B 
microcystins B, D 
microcystins B, D 
microcystins B, D 
microcystins B, C 
microcysfins A, B, C 
microcystins B, C 
microcystins A, C 
nodularins B 

ing that marine and terrestrial cyanobacteria produce simi- 
lar and sometimes the same secondary metabolites. Thus, it 
can be suggested that certain secondary metabolites isolated 
from marine invertebrates can be derived from certain 
microalgae. 

General similarities in structural features are also 
observed between compounds from marine and terrestrial 
sources. Halogenated and sulfated compounds are charac- 
teristically found in marine organisms and have also been 
obtained from terrestrial cyanobacteria. Some examples 
were noted above in secondary metabolites from freshwater 
cyanobacteria. A number of sulfated metabolites have been 
obtained as bioactive metabolites (Figures 7, 10 and 12) 
and halogenated metabolites such as anabaenopeptilides 90- 
A and 202-B (Figure 7) and aeruginosins 98-A and C 
(Figure 10) are also isolated from freshwater cyanobacteria. 
Halogenated compounds are generally much more abundant 
in cyanobacteria than in other terrestrial organisms. Other 
examples of halogenated metabolites of terrestrial cyano- 
bacteria are cyanobacterin from Scytonema hofmanni [43], 
hapalindole A from Hapalosiphon fontinalis [50], nostocy- 
clophane D from Nostoc linckia [47] and puwainaphycins 
C and D from an Anabaena sp [19,48]. 

Both marine and terrestrial cyanobacteria produce struc- 
turally related secondary metabolites and it is of interest to 
speculate why the cyanobacteria produce such metabolites. 
One can imagine that ancient cyanobacteria evolved in the 
seas and lived together with certain marine invertebrates, 
providing metabolites produced by photosynthesis, and that 
some of the cyanobacteria left the seas and adapted to fresh- 
water habitats and other terrestrial environments. The 
search for bioactive secondary metabolites from cyanobac- 
teria is providing increasing numbers of useful and structur- 
ally characteristic compounds. Future research should yield 
more evidence for the biological relationships between mar- 
ine invertebrates and cyanobacteria in marine and terres- 
trial habitats. 

swinhoei and halichondramide [34] from a Halichondria 
sp, and to kabiramide C [46] from nudibranch eggmasses 
(Figure 16). Aplysiatoxins (Figure 17) were isolated from 
sea hares [33] and also from the marine cyanobacteria 
Lyngbya spp and Oscillatoria spp [49]. The marine cyano- 
bacterial metabolites majusculamide C [12] and malyngam- 
ide C [1] from L. majuscula have structures similar to those 
of compounds from sea hares, dolastatin 11 [3,69] from 
Dolabella auricularia and stylocheilamide [75] from Stylo- 
cheilus longicauda, respectively (Figures 18 and 19). Maju- 
sculamide C was recently isolated from a sponge but was 
postulated to originate in a Lyngbya majuscula contaminant 
which provided the peptide through filter feeding by the 
sponge [85]. 

The sea hares apparently obtain these compounds or their 
precursors from their diets since certain marine cyanobac- 
teria are favorite foods for these molluscs. The structural 
relationships between metabolites of terrestrial cyanobac- 
teria and marine invertebrates, such as sponges and 
tunicates, are interesting. The primary producers of these 
compounds from sponges and tunicates may be symbiotic 
or associated cyanobacteria. In any case, it is quite interest- 
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